SÉRIES (1)

Étudier les séries dont les termes généraux suivent :

$$\mathbf{a.} \ \frac{1}{\sqrt{n}} \sin \frac{\pi}{n}$$

b.
$$\frac{e^{1/n}}{\sqrt[n]{n+1}}$$

a.
$$\frac{1}{\sqrt{n}}\sin\frac{\pi}{n}$$
 b. $\frac{e^{1/n}}{\sqrt[n]{n+1}}$ **c.** $\ln\frac{\cos\frac{1}{n}}{\cos\frac{1}{n+1}}$ **d.** $(1+\frac{1}{n})^n - e$ **e.** $\frac{\arctan n}{n+i}$

d.
$$(1+\frac{1}{n})^n - \epsilon$$

e.
$$\frac{\arctan n}{n+i}$$

$$\mathbf{f.} \quad \frac{\sin n}{\sqrt{n^3 + n} \, \cos \frac{1}{n}}$$

$$\mathbf{g} \cdot \frac{1}{n^{\tan(\frac{\pi}{4} + \frac{1}{\ln n})}}$$

f.
$$\frac{\sin n}{\sqrt{n^3 + n} \cos \frac{1}{n}}$$
 g. $\frac{1}{n^{\tan(\frac{\pi}{4} + \frac{1}{\ln n})}}$ **h.** $(\pi/2)^{3/5} - (\arctan n)^{3/5}$ **i.** $\frac{\sum_{k=1}^{n} \cos \frac{1}{k^2}}{\sum_{n=1}^{n} \sqrt{k}}$ **j.** $(\cos \frac{1}{n})^{n^2}$

$$\cdot \frac{\sum_{k=1}^{n} \cos \frac{1}{k^2}}{\sum_{k=1}^{n} \sqrt{k}}$$

$$\mathbf{j.} \quad (\cos\frac{1}{n})^{n^2}$$

k.
$$\arccos \frac{1}{n} - \arccos \frac{2}{n}$$

1.
$$\frac{1}{n^{\alpha}}\ln(1+a^n)$$

m.
$$\ln(1 + \frac{(-1)^n}{\sqrt{n(n+1)}})$$

$$\mathbf{n.} \ \frac{1}{n \ln n \left(\ln \ln n\right)^{\alpha}}$$

o.
$$e^{-\ln^3 n}$$

$$\mathbf{p.} \ \ln \left[1 + \frac{(-1)^n}{n^{\alpha}} \right]$$

q.
$$\sqrt[4]{n^4 + n} - \sqrt[3]{P(n)}, P \in \mathbb{R}[X]$$

k.
$$\arccos \frac{1}{n} - \arccos \frac{2}{n}$$
 l. $\frac{1}{n^{\alpha}} \ln(1 + a^n)$ m. $\ln(1 + \frac{(-1)^n}{\sqrt{n(n+1)}})$ n. $\frac{1}{n \ln n (\ln \ln n)^{\alpha}}$ o. $e^{-\ln^3 n}$ p. $\ln \left[1 + \frac{(-1)^n}{n^{\alpha}} \right]$ q. $\sqrt[4]{n^4 + n} - \sqrt[3]{P(n)}, P \in \mathbb{R}[X]$ r. $\sum_{k=n+1}^{+\infty} \frac{1}{k^{\alpha}} (\alpha > 1)$ s. $n!^2 x^{n!}$

t.
$$\ln\left[\frac{\sqrt{n}+(-1)^n}{\sqrt{n+a}}\right]$$
 u. $\tan\left[\frac{n^3+1}{n^2+1}\pi\right]$ v. $\arccos\left(1-\frac{1}{n^2}\right)$ w. $\frac{(-1)^n}{n}\sum_{k=1}^n\frac{1}{k}$ x. $\int_n^{2n}\frac{\mathrm{d}t}{1+t\sqrt{t}}$

$$\mathbf{u.} \ \tan \left[\frac{n^3 + 1}{n^2 + 1} \pi \right]$$

$$\mathbf{v.} \quad \arccos\left(1 - \frac{1}{n^2}\right)$$

w.
$$\frac{(-1)^n}{n} \sum_{k=1}^n \frac{1}{k}$$

$$\mathbf{x.} \int_{n}^{2n} \frac{\mathrm{d}t}{1 + t\sqrt{t}}$$

Soit $\sum a_n$ une série convergente à termes réels positifs. Étudier les séries suivantes :

$$\sum \frac{a_n}{1+a_n} \quad , \quad \sum \frac{a_n}{1-a_n} \quad , \quad \sum a_n^2 \quad , \quad \sum \frac{\sqrt{a_n}}{n} \cdot a_n^2 = 0$$

3. Soit $\sum a_n$ une série divergente à termes réels positifs. Étudier les séries suivantes :

$$\sum \frac{a_n}{1+n^2 a_n}$$
 , $\sum a_n^2$, $\sum \frac{a_n}{1+a_n}$, (*) $\sum \frac{a_n}{1+n a_n}$

Convergence et somme des séries suivantes :

$$\sum \frac{1}{n(n+1)(n+2)} , \sum \ln(\cos \frac{1}{2^n}) , \sum \frac{\left[\sqrt{n+1}\right] - \left[\sqrt{n}\right]}{n} , \sum \frac{n^3 + n - 2}{n!} .$$

5. On considère trois suites de réels (u_n) , (v_n) et (w_n) telles que, pour tout $n,\ u_n \leq v_n \leq w_n$ et telles que les séries $\sum u_n$ et $\sum w_n$ convergent. Prouver que la série $\sum v_n$ converge.

a. Nature et somme de la série de terme général $u_n = \ln 2 - \left(1 - \frac{1}{2} + \frac{1}{3} + \dots + \frac{(-1)^n}{n+1}\right)$. 6.

b. Prouver que $v_n = \arctan \frac{1}{n^2 + n + 1}$ peut s'écrire comme différence de deux arctangentes, et en déduire la somme de la série $\sum v_n$.

- 7. Étudier la série de terme général $u_n = \left[\frac{n}{n+1}\right]^{n^2}$, puis donner un équivalent de son reste d'ordre n.
- 8. On considère les séries (dites de Bertrand) de terme général $u_n = \frac{1}{n^{\alpha} (\ln n)^{\beta}}$ où $n \geq 2$ et $\alpha \in \mathbb{R}$.
 - a. Prouver, en la comparant à la série harmonique, qu'une telle série diverge pour $\alpha < 1$.
 - **b.** Prouver, en la comparant à une série de Riemann bien choisie, qu'une telle série converge pour $\alpha > 1$.
- 9. Soit α un réel strictement positif. On pose $u_n = \sum_{k=1}^{n-1} \frac{1}{k^{\alpha}(n-k)^{\alpha}}$. Étudier la série $\sum u_n$, et en cas de convergence, donner une expression de sa somme.
- 10. a. Soient (u_n) et (v_n) deux suites de réels positifs. On suppose que (v_n) est non nulle à partir d'un certain rang, et que $u_n \sim v_n$. Montrer que les séries $\sum u_n$ et $\sum v_n$ sont de même nature.
 - **b.** Étudier la série $\sum \frac{(i-1)\sin\frac{1}{n}}{(\sqrt{n^3+1}-1)\ln n}$, i désignant le complexe de carré égal à -1.
- 11. Soit f une fonction numérique continue et décroissante sur \mathbb{R}^+ de limite nulle en $+\infty$.
 - a. Prouver que la série de terme général $d_n = f(n) \int\limits_n^{n+1} f(t) \,\mathrm{d}t$ est convergente.
- **b.** En déduire que la série $\sum f(n)$ converge si et seulement si la suite d'intégrales $(\int_0^n f(t) dt)$ est convergente.
 - c. Étudier les séries de Bertrand de la forme $\sum \frac{1}{n(\ln n)^a}$.
- 12. Soit (u_n) une suite de réels positifs telle que la suite $(\sqrt[n]{u_n})$ ait une limite l dans $\mathbb{R}^+ \cup \{+\infty\}$.
 - a. Discuter, suivant la valeur de l, la nature de la série $\sum u_n$.
 - **b.** Comparer cette règle avec celle de d'Alembert.
- 13. Soit (u_n) une suite de réels positifs telle que la suite $(\sqrt[n]{u_n})$ ait une limite l dans $\mathbb{R}^+ \cup \{+\infty\}$.
 - a. Discuter, suivant la valeur de l, la nature de la série $\sum u_n$.
 - **b.** Comparer cette règle avec celle de d'Alembert.
- **14.** a. Déterminer, pour |x| < 1, la somme de la série $\sum (-1)^{n-1} \frac{x^n}{n}$ (utiliser une ruse du cours).
 - (b). Déterminer, pour $\left|x\right|<1$, la somme de la série $\sum (1+\frac{1}{2}+\ldots+\frac{1}{n})x^n$.